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LATTICE THEORY OF FACE-SHEAR AND THICKNESS-TWIST
WAVES IN F.C.C. CRYSTAL PLATES

KEevIN J. BRADYT

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

Abstract—TFinite difference equations of motion of the sixth order and the associated boundary conditions for
principal planes are formulated for a f.c.c. lattice of mass particles. The equations are solved for face-shear and
thickness-twist waves in a plate with free faces. Computations of mode-shapes and the frequency spectrum
are presented for copper and the results are compared with a previous solution for a simple cubic material and
with the solution of the classical equations of elasticity.

1. INTRODUCTION

ONLY a few examples of lattice vibrational waves have been worked out for plates with free
faces: Gazis and Wallis have examined the lowest mode of extensional motion [1] and the
lowest mode of flexural motion [2] in an infinite plate of material with simple cubic sym-
metry and, for the same type of plate, Mindlin [3] has found the complete spectrum of
face-shear and thickness-twist waves—i.e. waves with displacement and wave normal at
right angles to each other and parallel to the faces of the plate. In all three examples, the
difference equations of motion and boundary conditions employed were those formulated
by Gazis et al. [4] for a simple cubic lattice in which account is taken of nearest and next
nearest neighbor central force interactions and their special type of angular interaction
between three non-collinear atoms. The purpose of the present paper is to describe the
solution for f.c.c. crystals analogous to the problem solved by Mindlin [3] for the simple
cubic case.

Equations of motion of a f.c.c. lattice, with two central force interactions and two angular
interactions of the type introduced by Gazis et al. [4], have been formulated by Yuen and
Varshni [5]. The central force interactions between nearest neighbor atoms [Fig. 1(a)} and
between next nearest neighbor atoms [Fig. 1(b)] both lead to finite difference equations of
motion of the fourth order; and the two angular interactions considered by Yuen and
Varshni [Figs. 1(d) and 1(¢)] also yield as high as, and only as high as, fourth order terms in
the equations. There is a third angular interaction [Fig. 1(c)] which also contributes fourth
order operators to the equations of motion and, furthermore, the sum of the distances
between the three participating atoms is less than that for the angular interactions taken
into account by Yuen and Varshni so that the additional angular interaction might be
thought to be of importance. Nevertheless, when investigations were made of the effects of
substituting this third angular interaction for the two considered by Yuen and Varshni and
also of adding the third angular interaction to the Yuen and Varshni model, it was found that
in the former case, the results were inferior to and, in the latter case, almost the same as
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F1G. 1. Typical interactions and associated difference operators for a f.c.c. lattice.

those of Yuen and Varshni. These conclusions were based on the closeness of match
obtainable between the computed dispersion curves for longitudinal and transverse bodily
waves in the [100], [110] and [111] directions and those found from neutron diffraction
measurements with copper by Svensson et al. (6], as shown in Fig. 2.

A further effort to improve the equations was somewhat more successful at little cost in
additional complexity. Admission of sixth order difference operators, in the equations of
motion, was found to require the addition of only two more angular interactions [Figs. 1(f)
and 1(g)] and no further central force interactions. The resulting equations produced a small,
but significant, improvement in the match with the Svensson et al. data, as shown in Fig. 2.
These equations, along with the appropriate boundary conditions, were used to calculate
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the mode-shapes and complete frequency spectrum for a family of face-shear and thickness-
twist waves with wave-normal and displacement in principal crystallographic directions in a
plate bounded by principal crystallographic planes.

Although the solution for the plate of f.c.c. material is far more complicated than the one
found by Mindlin 3] for the simple cubic case, the computed results are almost indistin-
guishable—although there are some qualitative differences of small magnitude. Accordingly,
in general, the difference between the lattice solution and the solution based on the continu-
um theory of elasticity is about the same whether the lattice solution is for the simple cubic
or the f.c.c. case.

Regarding the frequency spectrum (Fig. 4) there are as many real branches as there are
layers of atoms across the thickness of the plate—in contrast to the infinity of branches
in the continuum theory of elasticity. Each real branch has a low frequency cut-off at
infinite wave length; but the cut-off frequencies are not integral multiples of the lowest,
non-zero one, as they are in the continuum solution. As the wave length diminishes, each
branch approaches a high frequency cut-off, whereas the frequencies in the continuum case
approach infinity. The lattice frequencies are near the continuum frequencies only in the
region where the wave lengths both along and across the plate are long in comparison with
the distance between nearest neighbor atoms—i.e. in the lower left hand corner of Fig. 4.
To the scale to which Fig. 4 is drawn, the difference between the spectra for simple cubic and
f.c.c. is not noticeable.

As for mode-shapes across the thickness of the plate, the simple cubic and f.c.c. cases
differ qualitatively. The displacements, in the former case, lie on sinusoids with real argu-
ments; but, in the latter case, the displacements for each mode lie on a curve which is the
sum of a sinusoid with a real argument and one with a complex argument, so that there are
exponential parts (decaying inward from the surfaces). However, those parts are, compara-
tively, very small. At long wave lengths across the plate, the mode-shapes differ little from
the continuum case, as illustrated in the lower portion of Fig. 5. However, the difference
increases markedly as the wave length across the plate diminishes—i.e. as the order of the
mode increases. Finally, whereas, in the simple cubic and continuum cases, the mode-shape
across the thickness of the plate does not change, for a given order of mode, with change of
wave length along the plate, there is a slight change in the f.c.c. case. This change, and also
the difference between the simple cubic and f.c.c. mode-shapes, are not perceptible on the
scale to which Fig. 5. is drawn.

2. FORCES ON A PARTICLE

Consider a fc.c. lattice of identical particles of mass M. The particles occupy positions
(p1a/2, p,a/2, psa/2), denoted as P, where a is the lattice constant. The indices p,, &« = 1,2, 3
are integers with their sum always equal to an even integer. The potential energy of the
lattice, U, is assumed to be:

U= U{APQ’ MPQR} 1)

where Ap, is the change in the distance between the particles at P and Q and 60pgy is the
change in the angle whose vertex is at particle Q and whose arms extend to the particles at
Pand R.
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The potential energy is expanded in a Taylor series about the equilibrium configuration,
keeping only the harmonic terms:

1 1
U =53 UQ RA+s ¥ U@ R, )bxs, @)
Q.R O.R,S
where
02U oU
U@, R) = 6__A5R =U(R,Q),U(Q,R,S) = 5—.595“ = U(S, R, Q),

where the derivatives are evaluated at the equilibrium configuration. Then, if Up is the
displacement vector of particle P, the force on it is:

—oU dhgr

_ 000prs
30, =~ 5 U@ Plan

aUp ’

Fp = Zs U(Q, R, 5)d0gzs &)

Q.R,

where the first summation represents the central force terms and the second summation
represents the angular force terms.

(a) Central force terms

Let the reference and deformed vectors extending from particle R to particle Q be g
and ryp respectively. Then

and
AQR = ARQ = |1'QR| —|i'QR|- (5)

For displacements that are small compared to g,

P
Agg = l?f:ﬁ o (Ug—Upg) = figg o (Up—Up) 6)
then
0
28 = Boalbra—ral Q

Now, due to the translational symmetry of the lattice, the coefficients U(P, @) depend
solely on the magnitude of the vector 4. Therefore, define :

3
hy = 8.~ Pwa =1,2,3, Ug—Up = Y €1} pn, Alh1hzh3) = 2U(Q, P)

a=1
then
a 3

i'QP = 5 z eaha

a=1
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where e,, & = 1, 2, 3 are unit vectors parallel to the three axes of the cube. Then, the central
force contribution to the force on particle P is:

Fp=— Z U(Q, R)AQRﬁQR[‘sPQ_‘SPR] = 2%: u,p )AQPﬁQP’
Q,R

— @ 18273 8
RN e Ee pa ®

This summation is continued over both positive and negative values of the indices &, , h,, b
up to some limiting value H = (h?+h3+ h3)}, where Ha/2 is the limit on the distance
between interacting particles. From the translational symmetry of the lattice, A(h, h,h;) =
A(h h,—h3), etc. The summations over positive and negative values of the indices can
therefore be replaced by summations over non-negative values. When this is done, the
central force contribution to the force on particle P is:

H 3 3
Fp= Z n (1-1175;.50) Z A(hlhzhs)ea[hazzoou:,hzh,)+|eapy|hahp0y(}~£1hzh3)], ©)

hihah3=0¢e=1 ap,y=1
is the alternator tensor,
1 ha =0
5;..0 = {

0 h,#0

where e,4,

and the difference operators are:
a a a a
Oo(lzlhzhg) = A’:lhzhg +}‘:1hz—h3 + }';1 —haha + j’hl —ha—h; + A"h]hzh; + A—hlhz"hg + A“"’u —hzh3
+j'::—hz~h3’

. _ a a a a o _Ja e
O1(25 1ohs) = Ahiions F A% pinahy + Ahs —ha—hs T AL by by — s = Ahaha—hs — AL hyhz — s = Ay —hohs

a
—A'—!u—'lzhs’
a — Ja a a o _a _a _ja
OZ(Ahlhzh:,)“ h1h2h3+'lh1—hzh3+j'—h1h2*'l3+A‘-h1—hz—h3 j’hlhz_h:i )“hi"hz-hs ﬂ‘—hlhzhz

«
’I—h—hhg’

a __ Ja a « a _1a _a __ga
03(Ahlhzh3)_}‘hlhzh3+'1h1h2—h3+)'—hl‘h2h3+l-h1-hz—h3 }'hx—hzhs )‘ht‘hz"hs l-hhzha

—Aa—hﬂlz"ﬁf (10)

(b) Angular force terms

Let the angles formed at particle R by the vectors extending from R to the particles at
Q and S be éQRs and Oyps in the reference and deformed states respectively, with Oyps =
éQRS +00ggs. Then, for [06ygs| « 1, and for displacements small compared to the reference
vectors,

60QRS = (cos éQRs'—COS BQRS)/sin éQRS

= {Ugeo [kgr +tsg— (igrltsal +Bsaltgrl)(gg o figg)] — Ug o [Fsg —Bgglfsgl sk © figg)]

—Ugo [Fgr— ﬁSRIi.QRI (Bsg ° ﬁcx)]}/li'ck X Bl (11)
for éqxs # 0, I1. Then
060
‘ﬁ:s = {Orpltor +Fsg — (igglfsgl +splforl )i o Bge)] — Ogplfsr —figrlfsrl(bgg o fisg)]

—dsplfor— ﬁsnlf’qnl(ﬁsn ° ﬁQR)]M"QR X fggl. (12)
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The angular force contribution to the force on particle P is then:

Fp=— QZS U(Q, P, 8)d0ypsltgp+isp— (Bigpltspl +Bisplfgpl)(figp o isp)l i op X Fspl

+ Y. U(P, R, 5)00pgs[tsg—Dpgltsllipg o Bsp)lAfsg X Epgl
RS

+ Z U(Q, R, P)30ypp[for—Dpgltgrl(Bpg o figr)]IEgr X Fpgl-
O.R

947

(13)

Now, due to the translational symmetry of the lattice, the coefficients U(Q, R, S)
depend only on the magnitudes and relative orientations of the vectors f,x and ¥gg. This

dependence may be expressed as

U(Qa R’ S) = U(Q’ R’ S){I*QRL IfSRL (fQR ° i'SR)}'

Therefore, in the summations above, employ the following definitions:

first summation second summation
ha =4, Do h; = 84— Da ha =Tz~ Da h; = ra_sa’ja = h(;_ha
Alil) = UQ.P,S) A = ACkHTETl) = UP,R.S)

hihiks hih3h} ~hi—hy—h3

third summation
ha =Ty h; = ra_pa’ja = h;_ha
A(hlhzhg) — A(-’hl—'lz—hﬂ) = U(Q, R, P’)

Hih3h —hi — by~ b

then

3

3 3
fop = (a/2) Zl e,h, fpr = —(a/2) Zl e,h, for = —(a/2) Z e,h,

a= a=1
3

3 3
fsp=(a/2) 3 e, tsp=—(/2) Y eh,.  Fpg=—(a/2) ¥ eh.
1 a=1 a=1

Then, the angular force contribution to the force on particle P is:

H 3
Fp= ) Z AQiiaee {(a, + a)(aph pon, + a;s}»ﬁ',hshg)"‘ (ag+ap) (@Al no, + aﬂgihm)

hihohs a,f=1
hih3h3
- (a;aﬂj";njzjs + aaa;’j'{fx ~j2 ‘13)}/(a/2)2(aal)2(aal - 12)

where

3 3 3
6= Zl ko = Zl % t= Zl hh,, a, = (h.o—h,7)d’, a, = (ho' —h)o, 0 = 1,2,3.

(14)

(15)
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From the definition of the A(}}#+) and equation (14) it is easily shown that A(}ip) =
AGirZh), etc. Using this, the double summations on the indices h,, b, over both positive
and negative values can be replaced by summations over non-negative values. First define :

3

MG = Y e[2a,+a) [3,00(45,hn,) + 3O00(A5ihshs)] — 28,8,06(4%, 510

afy=1

+eqg, {[aa, + ar) + aa, + ay)]Op(A4, 4,0,) + (a8, + a2) + ax(a, + ;)] O p(Ains s)
—(a,a,+ a,a,)O44},;,; ) 1Na/2) (o6’ — %),

then employing the convention:
hyhah hihoh —_ hyhah hihah hihzh hihoh
A(hih;i?h:’g)M(h':h; ;hé) - A(h;h;h;)M(h’:h;h;)+A(h;h; -?hé)M(h;h; —sh_‘,)’
etc., the angular force contribution to the force on particle P is:

H
Fp = H [1=(Oh0+0n0)2+ Onmo/d] Y AR i )M e n)  (16)
a= hihz,h3=0
hi,h3,k3=0

where

5 {1 h,=h,=0
b0 10 otherwise

3. BOUNDARY CONDITIONS

A free boundary is formed by the removal of all particles on one side (p, < 0) of the
layer p, = 0. The boundary conditions state that the sum of all forces on a particle, which
arise from interaction with any of the removed particles, is zero.

(a) Central force terms

The boundary conditions on the central force contributions are obtained from equation
(8) by restricting the summation over index h, to h; +p, < 0 and setting the result equal to
zero. This restriction has no effect on the summations over the indices h,, hy; so, after
proceeding in a manner similar to that used to obtain equation (9), the result is:

0= 3 Z H (1—64,0/2) Z A(hyh3h3)e,[hEO0(5 ons) +eapy | g0, (A an,)]

h1+p1 <O0h2,h3=0¢=1 a,B,y=1
+(h? +h}+h3), (17

where the operators O,(4},,,,,) are obtained from the operators O (45, ,.4,) €quation (10) by
Settlng la_ hihahs = Athlhz—ha = A.a_ By —hahs = A-a_ hi—ha—hs = 0.

(b) Angular force terms

The boundary condition on the angular force contributions is obtained from equation
(13) by restricting the summations over h; and h} to cases where one or both of the particles
in the interaction have been removed and setting the sum equal to zero. The summations
over the indices h,, h3, ha, by are unaffected by the restrictions placed on the summations
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over h, and h}. Each of the three summations in equation (13) yields three sums contributing
to the boundary conditions: in each of the first two contributions, one of the interacting
particles, Q or S, R or §,  or R has been removed, in the third contribution both particles
have been removed. Employing the same definitions as previously, the angular force
contribution to the boundary conditions is:

= hih2h hihzh hih2h
0= Z ZA’(h':izhzth'a)[ﬁ(h':izhzihé)+M*(h;izhgzth;’;)]

hi<—-py b
hikok *ghi T it ks hy ok ki LR+ kS

+ Z Z A (k: ;h;ilﬂ M (k:hzhs 3)+ Z Z A' ':izhgifu)M*(hxkz 3)

B<-p B B2 —pi Ki>pithy
+(hyhzh *ikyhzh hyhah Rihak

+ Z Z A (ll':izh;:th;'g)M (ﬁ’::tzh;ihg)-'- Z z A'(hli:lz::i:tha)M(h:izh;i’lg

Mz-prm>pr1+h hi<p:r hiz-p:
where (18)

3
AGER = ACHED) T1 11— Guuot 810/ 2+ duunco/4,

3
M (:: :2::) = Y efa,+a){a,00(A% nn,) + BO0(A% psns) + syl [0, 05(Ahnsns)

apy=1

+a,0(Akssn)1}a/2)(06") (00" — 77),
3
M*tty = Y e,al{(a,+a)O00(Anans) — 3.00(4%, 1us,) +1up (@, + )0 s Al ashs)

af,y=1

—a Cﬂ('lJ uz)s)]}/ (@/2)¥(o0’) (00’ —72).
Adding expressions (17) and (18) yields the boundary conditions on the boundary layers
ri=012,....

4. DIFFERENCE OPERATORS

For a function

a
Fp=F {5 (espy +e,p; +93P3)} = F(p),

define the differences:
AlFp=F(P+e)~F(P) A Fp=F(P)—F(P—e,)
E.Fp = F(P+e,) E.Fp=F(P—e)
AZFp = A} A Fp AFp=HA+A])Fp =123
Then
Aiinars = Up,vnpatmpaths = Uppupaps = (EVEFEY —DU3, ., (19)

where E2F, = E,(E,Fp), etc. and I is the operator identity symbol. These expressions are
substituted for the terms in the difference operators equation (10), and the results expanded.
The general expressions for the results are given in the Appendix; for the present work,
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however, the restrictions h, < 3, « = 1, 2, 3 have been imposed, which yield the expressions :

3
Oo (A% nsh;) = { 1_[ 2+ h§A§ + (5,,‘,2 + 65,,ﬁ3)A;' + 5,,'33A§] — 8} U3 p2ps
=1

O (A3 4z0,) = 4{[2 +hiA} + (8,5 +684,3)AT + 6, 3A%] ﬂ]i[z [helg+ (05,2 +44,3)AFA,
+<S,,ﬁ3A§A,,]} U, psps

0,45 430,) = 4{[2 +hiAZ+ (0,2 +684,3)A5 + 8,,3A5] ﬁ]i[l . [hsAg+ (0,2 +49, ﬂs)AﬁAﬂ
+5hp3A§Aﬁ]} U 1p2ps

O3(Af np0s) = 4{[2 +h3A% + (84,2 + 65,,3)A% + 6,,3A8) ﬂ]i[l [hpAg+ (s, +45,,33)A§A,,
+ 6,,,,3A;A,,]} Us.paps-

5. INTERACTIONS PRESENT

We wish to consider a model which contains all central and angular interactions that
give rise to finite difference equations of motion of order not higher than 2K, where K is
some positive integer. Any interaction which would lead to finite differences of an order
higher than 2K in the equations of motion is eliminated from consideration. The finite
differences appearing in the equations of motion due to each interaction are expressed in
terms of the difference operators O,(44 ,,,,) by equations (8) and (16). These difference
operators are expressed in terms of central differences by equation (10). The highest order
central differences that appear in the operators O,(43 ,.,.) are: in Oy(44 , ;.) the order of the
highest difference is 2(h; + h, +h3);in O45 ,.,.), @ = 1,2, 3, this order is 2(h, + h, + h; — 1).
The restriction that any interaction considered shall give rise to differences of orders <2K
requires that hy+h, +h; < K, unless the coefficients of Og(44,,,,,) in the equations of
motion vanish. If this is so, the restriction requires h; +h, +h; < K+ 1. The coefficients of
Oo (A4, 4,4,) for the central and angular force contributions will now be investigated.

For the central force contribution to the force on a particle, equation (9) shows that the
e, component of the force contains the term h>Og(45,,4,). The requirement that this term
vanishes for o = 1, 2, 3 results in .1 particle interacting with itself. Therefore, for the central
force interactions considered, h; +h, +h; < K.

For the angular force contribution to the force on a particle, equation (16) shows that
the e, component of the force contains the terms a,(a,+a)Oo( 45, n.5.)> %+ @,O0(Ak;nyns)
and a,a,0(47,,;,)- Since the first term becomes identical to the second under an interchange
of indices, it is sufficient to examine only the first and third terms.

The requirement that the first term vanishes for « = 1, 2, 3 yields, when summed over a:

od’(c’—J)od' —13) =0

but 6o'(66’ — J?) # 0, since it is assumed that there are three non-collinear particles in the
angular interaction. There remains ¢’ = 7, then

ay(a; +ay) = (6—a)t?h(hi6—h,0}) = 0.
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The possibilities are :

1. ¢ = o', but then oo’ —12 = 0, which is not possible;

2. hy = 0, but cyclical permutation gives h, = h; = 0, which is not possible;

3. T = 0, but then ¢’ = 0, which is not possible;

4. hijo—h,6’ =0 or hy = h,d’/a; but cyclical permutation gives h; = hyo'/o, by =
h3a’' /o, which lead to g’ —1? = 0 which is not possible.

The result is that it is impossible to satisfy the requirement that the term a,(a,+a;)
% Og(45 5,4,) vanishes for « = 1,2, 3. Therefore, for the angular force interactions considered
hy+h,+hs < K, and on account of the symmetry noted above, b} +h, +h; < K.

The requirement that the third term vanishes for « = 1, 2, 3 yields, when summed over
a:

oa't(6o’—1%) =0

which is possible only if T = 0. With this, the requirement is that kb = hyh, = h3hs = 0.
It is therefore possible to have interactions for which j, +j,+j; = K+1 if hh, =0,
=1273

Consider a model of a f.c.c. lattice for which K = 3, i.e. a model containing all the
interactions which lead to sixth order difference equations of motion. From the above
considerations, the only possible values for the indices h,, h, in the central and angular
force interactions are the permutations of (110) and (200). The possible combinations for
the angular interactions are presented in Table 1, and the interactions considered are noted.

TABLE 1. COMBINATIONS OF THE INDICES (y, h,, hy), (hy, h3, h3) WITH THE ANGULAR INTERACTIONS PRESENT AND
THE CORRESPONDING FORCE CONSTANTS

hyhyhy KRyl Jdis T Comments Force constants
1 10 110 000 2 Omitted, particle interacts with itself

110 011 -101 1 Retained K, = 44319
110 1-1 0 0-2 0 0 Retained K, = 44(1'%,)
110 0-11 -1-2 1 —1 Omitted,|j|+ljsl+ljs =4 1#0

110 ~1-1 0 -=2-20 -2 Omitted,[j|+ljal+lsl =410

110 2 00 1-1 0 2 Retained Ky =243
1190 002 -—-1-12 0 Retained K, =249
110 -200 =-3-10 =2 Omnmitted |j|+l,i+lsl =41t#0

2 00 2 00 000 4 Omitted, particle interacts with itself

200 020 -220 0 Retained Ks = 4423
200 -200 -4 00 -4 Omitted{jil+lj+lsl =410

There are therefore seven interactions considered : two central force, with coefficients
A(110), A(200), and five angular, with coefficients A(}!9), A(}1%,), A(339), AG), A(3IS).
These coefficients may be related to the central and angular force constants. For the central
force constants C;, j = 1, 2, using equation (3) and the fact that Ap, = Ay, yields

C, = A(110),  C, = A(200).

A similar argument holds for the angular force coefficients if an additional factor is intro-
duced in the instances where the summation over the indices counts an angle more than
once. The method employed was to consider every permutation of the indices (h h,h;),
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combining each permutation with all possible combinations of the indices (+h} +h, + h5)
consistent with the particular angular interaction. For the instances in which the indices
(hyh3h}) are some rearrangement of the indices (h; h,h;) this method counts each angular
interaction twice. Consequently, in these instances an additional factor of two is introduced
in the relationship between the force constants K;, j=1,...,5, and the coefficients
A(jiy2n). These relationships are summarized in Table 1.

Typical illustrations of the particles participating in each of the seven interactions are
shown in Fig. 1.

6. EQUILIBRIUM EQUATIONS, BOUNDARY CONDITIONS

Substituting the values of the indices, for the interactions considered, into equations (9)
and (16) yields the equilibrium equations:

MU!

PIPZPB

BOy(A} 10+ 4101)+ B200(Ad11) + Ba[05(A110) +03(4301)] + B{Oo(A300)
+ BsOo(A520 + Ag02) + B[O5(A3 11 +4321) +03(4311 +4315)] (20
+ B;[05(4330) +0,(430,)),

or, with the difference operators expanded,

MU} .5 = [b1A}+by(A2+ A3)+ b3 At + b AYAZ + A) + bs(AS + A%+ bsAZAIUL .0,
+[b;A2 4 bg(AI+A2)+b o ANAZ + A2)+ b, AZAZIA A U2, L,
+[b; +bsA3 +bo(A +A3)+ b, oAZ(AZ + A3+ by, AIAZIA AU .0 21

where

B, = C,/4+2K, +K,+K;)/a* Bs = (—K,/2+K,+K)/a?

B, = 2(K, +2K,)/a? B¢ = K,/a*

B, = C,/4+(K,—2K))/a® B, = Ks/2a?

B, = C,/4+K,/a*

by = 2C, +4C, +16(K, +2K, +K3)/a® by = 2C, +8(K, +2K, +4K ,+ 2K ;)/a’
b2 = C1 +8(2K1 +K3+4K7 +2K5)/a2 bs = 16K4/az

b3 = CZ +4K2/a2 b9 = 8(K4+K5)/az
by = Ci2+4K,+ K, +K,)/a® byo = 4K,/a?
bs = 2(—K2 +2K4+2K5)/a2 bll = 4K5/a2

be = 4K, +2K,)/a’

The corresponding equations for the equilibrium of the e, and e, components may be
obtained by cyclical permutation.
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For the particular boundary chosen, p, = 0 there are only two layers of particles,
p; =0, 1 on which there are boundary conditions. The boundary conditions on the
normal e, components are:

0 = aOg(A110+A101) + 25 00(4811) +#500(A502 + 4520) + %4 [03(A1 10) + O2(4101)]
+a5[03(4311)+ 02(4311)] + 26[03(A320) + O2(A302)] + #500(A% 1 10+ 4L 101)
+5[03(42 110)+ 0242 161)] + 25[03(A2 121) + 05(A% 11,)] +1000(41 200)
+a11[03(42 211+ 02(A2 1 )] +1,[03(32 220) + 01(A2 502)]), (22)

and the boundary conditions on the tangential, e, components are:

0 = Bi00(A}10)+ B200(431 1) + B500(4320) + BiOo(4302) + B505(41 10)
+B603(Ao11) + B503(A520) + B501(451 1) + BsOo(42 110)
+B1606(A2 101) + B1103(AL 110)+ B1203(AL 121)+ B1301(A2 131 +42 112)
+B1400(A% 200) + B1503(AL 211) + B1603(A1 220), (23)

where the superscript i identifies the layer in which the particle is located, and the coeffi-
cients are:

of = of = a7 = —pi; = K3/2d°, a3 = BYo = 2K, +2K,)/a?,

af = fla = Bla = (— K22+ K +Ks)/d?,  af = — 5 = 3K, +K,)/d’,

@ = — B9 = (K, +K;+2K,+K)2a%, o) = B3 =C,/4+2K,+K,+K;)/a%
ag = B11 = —C1/4+(— K, +2K;)/a?,

ag = o‘(1)1 = —“é = ‘1%1 = —ﬂg = (1)2 = —ﬂ?s = (1)5 = ﬂé = ﬂ%s = “‘K4/‘12,
afo = ajo = C,/4+K,/8d?, of, = —ag = ai, = fie = B} = Bls = —Ks/2d°,
al=ws=0a5=p=p3=p3=Pi=Ps=Bs=Plo=Pi, =Bis =0,

oy = 4K,/a®, o} = Ks/a?, a5 = B} = — B3 = B = (K, +K;/2)/a®

B2 =2K,/a’>, B3 =K,2a>, B§ =K,/a

The boundary conditions on the tangential, e; components may be obtained by a cyclical
permutation on equation (23).

7. EVALUATION OF THE FORCE CONSTANTS

The seven force constants are determined in terms of the three classical elastic constants
and the following frequencies, measured at the Brillouin zone boundaries :

1. v,, the frequency of a longitudinal wave in [100] direction;

2. v,, the frequency of a tangential wave in [100] direction ;

3. vs, the frequency of a T, wave (wave vector parallel to [110]) in [110] direction,

4. v,, the frequency of a tangential wave in [111] direction.

These conditions yield seven linearly independent equations for the seven force con-
stants. The frequencies of the longitudinal waves at the Brillouin zone boundary in the
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[110] and [111] directions, v, and v; respectively, and the frequency of the tangential, T,
wave at the Brillouin zone boundary in the [110] direction, v, yield redundant expressions.
The results for the force constants are:

C, = {a[4C 1(3+4/2)— 4C,4(5+4/2)— 4C, (1 +2/2)] + 4nM[2v3(4+ 3,/2)

+ V(1 +/2)+ 433 +2/2)— 16V211/16(1 +.,/2),

C, = {a[4C, (24 3/2) +4C,44(5+4/2) = 4C (1 +2./2) — 4n*M[2v2(4 + 3,/2)

Kl/az =

Kz/az =

K3/a2 =

K4/(12 =

K5/02 =

F V(1 +/2)+ 423 +2/2)— 16v21}/16(1 +./2),

{a[4(Cy — C13— Coy)] +4n*M[4v2 + 2v3(4+ 3,/2)— 16v3
—v3(1+/2)]}/64(1 +./2),

{a[2(1+2J2)(Cy5— C11)—2C44(5+4/2)] +4n2M[202(3 + 2,/2)
+v3(443/2) - 8v2]}32(1+/2),

{a[16,/2C1 3 —16C 44 —8Cy (1 + 3/ 2]+ 4n M[3v3(1 +/2) + 2v3(7 +3/2)
+8vE(5+3,/2)— 64v21}/128(1 +./2),

{a[2C13+Cyy— C 1)) +4n* M[8vE —2v2 —v3(3+2,/2)]}/64(1 +/2),

{a[2\/2(Cy5— C11)—2C 442+ /)] +4n*M[2v3(2 + \/2) +v3(3+2/2)
—8vI1}/32(1+/2). (24)

The sixth order terms in the finite difference equations of motion are contributed
solely by the angular interactions represented by the force constants K, and K [Figs.
1(f) and 1(g)]. If these interactions are eliminated, then the remaining interactions include
those considered by Yuen and Varshni [5], represented by the force constants C,, C,,
K,, K;, and an additional angular interaction represented by the force constant K.
These five remaining force constants are determined in terms of the three classical elastic
constants and the frequencies v, and v, ; the results are:

Cy = [2a(Cy, — Cag) +n*M(v: +2v2)]/4,
C, = [a(C; +2C,4)— 2 M(vi+2v3))/4,
K, /a*> = m*M(2vZ—v?)/16,
K,/a* = [—aC4,+n*Mv3]/8,

K3/a? = [2a(3C44— Cy,)+ n*M(3v2 — 10v2))/32. 25)

If v? = 2vZ, then these become identical to Yuen and Varshni’s results [5].



Lattice theory of face-shear and thickness-twist waves in f.c.c. crystal plates 955

The sum of the distances between the three particles participating in an angular inter-
action is the least in the case of the interaction represented by the force constant K.
If only this angular interaction, together with the two central force interactions, are con-
sidered, the force constants may be determined in terms of the three classical elastic
constants as:

C, = al2C,+C4)/3,
C, = a(3C,1 —2C,—4C44)/12,

K,/a® = a(Cqy—Cy2)/24. (26)
Svensson et al. [6] present the following data for copper at T = 296°K :
a=3147x10"%cm v, = 7119 x 102 ¢/s
C,; = 16-85x10!! dyn/cm? vy = 508 x 102 ¢/s
C,, = 12:15x10!! dyn/cm? vs = 455x 10'% ¢/s
C4q = 7-55x 10! dyn/cm? v, = 337x 102 ¢/s

Table 2 presents the resulting values of the force constants for the four models : the model
containing seven interactions, the model containing five interactions, Yuen and Varshni’s
model with four interactions and the model with three interactions.

TABLE 2. THE FORCE CONSTANTS FOR COPPER AT T = 296°K. VALUES IN UNITs OF 10° dyn/cm

Force Seven Five Yuen and Three
constant interaction model interaction model Varshni model interaction model

C, 37.26 3520 3522 38.38
C, —00751 1984 1.962 —~1-189
K,/a* 01324 —0.00542 —0-6953
K,/a® 04616 —005297 —00476

K/a* —0.0697 ~09871 ~09917

K,/a* —0-0689

K/a* 03262

The dispersion curves for longitudinal and transverse bodily waves in the [100], [110]
and [111] directions were computed for each model and are compared to the experimental
results in Figs. 2(a)-(c). The results obtained from the model containing only three inter-
actions, two central force and one angular (K,), are clearly inferior to those obtained by
Yuen and Varshni. The model containing five interactions (Yuen and Varshni’s model
plus K,) yields results which are indistinguishable from those of Yuen and Varshni. The
model containing seven interactions yields results which show a small, but significant,
improvement in the match with the experimental results.

8. SHEAR WAVES
In an infinite lattice, — oo < p;, p,, p3 < o0, consider displacements
U:npzps = Ungn = 0’

UilPZPJ = f(pl)ei(paﬂ-wt)_ (27)
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These displacements represent waves with displacement perpendicular to the wave-normal
and parallel to the principal crystallographic plane p, = const. With these displacements,
the first and third equations of the type (21) are satisfied identically and the second is
satisfied if

0 = bsA% f(p,)+[by—2bs(1—cos 8)]A? f(p;)+[— 2b,(1 —cos 6)
+4b4(1—cos ) + Mw?*1f(p,)

Assuming solutions of the form f(p,) = A4 e*?* yields:
(1-cos &y ) = {[by—2be(1—cos 8)] + [b% — 4bsMw? +4b,(2b5s— bg)(1 —cos 0)
+4(b% —4b2)(1 —cos 6)*1*} /4bs. (28)
The general solution for the displacements is then:
= [A; cos {py + Az cos §,p,] €707+ [Aysin &,p, + A, sin &yp,1ei®0 ™, (29)

where the £, , are, in general, complex numbers. As may be seen from equation (29) the
solution is separable into two parts: one symmetric, and one antisymmetric about the

plane p, = 0.
The behavior of the roots ¢, , of equation (28), as functions of the frequency, will now

be analyzed. Let

U2

PiP2p3

1—cos &y, = ¢y $12= X122+,

then

cos&; = cos gjcoshyy;—isiny;sinhyy; = 1—-¢;, j=1,2
For

®* < w? = [b3+4b,(2bs— bg)(1—cos 0)+ 4bZ — 4b2)(1—cos 0)*]/4bs M,
the parameters ¢; are real. In this case
sin y;sinhyy; = 0

and there are three regions:

1. ¢; <0: the roots are £; = iyy;  where cosh y; = 1—¢;;

2 0<¢;<2:therootsare {; = y;  wherecos y; = 1—¢;;

3. ¢;>2: the roots are £; = n+iy; where cosh ; = ¢;—1;

Now, the minimum value of ¢, occurs when w = w,. This minimum value is:
®1min = [b2—2be(1—cos 6))/4bs,

which for most materials, is > 2, since it is essentially a ratio of the lowest to a higher order
interaction. Consequently, the first root is ¢; = n+iy,, where coshy; = ¢p; — 1.
For the second root, define:

w? = 2(1—cos O)[b, —2bs(1—cos ))/M,
wf = {2(1—cos 8)[b, — 2bs(1 —cos 8)) + 4[b, — 4b5s — 2bg(1 —cos O)]}/M,
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then:for0 < w < w,,then¢, < 0,andthesecondrootis¢, = iy, ,wherecosh iy, = 1—¢,;
forw, < w < w,,then0 < ¢, < 2, and the second root is £, = y,, wherecos y, = 1—¢,;
forw, < w < w,,then ¢, > 2,and thesecond rootis ¢, = n+iy,,wherecoshy, = ¢,— 1.

For high frequencies, w > w,, the parameters ¢, , are complex conjugates. For this
case, define:

$1,2 = @y tia,
then
l—al iiaz = COS xl 2 COSh wl z—isin Xl 2 Sinh l//l 2.

Substituting x, , = n+ j and simplifying yields £, , = n++iy, where y; = ¢, = y.
The graphs of {; = éj(wz) are given in Fig. 3. For o < w, the graph of ¢, = ¢,(w?) =

7+ iy, is a smooth curve, rising vertically at w = 0, thereafter with continuously decreasing

slope until at w = o, the curve becomes horizontal. For w < w,, the graph of £, = &,(w?)

2
e,

W,

(]

S xtiy

FiG. 3. Graph of the roots ¢; = {(w?),j = 1,2.
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is composed of three smooth curves: the first curve, &, = iyf,, rises vertically at w = Q,
thereafter with continuously decreasing slope until at v = w,, €, = 0, and the curve
becomes horizontal; the second curve, &, = y, starts horizontally at w = w,, £, =0
and rises until it again becomes horizontal at w = w,, ¢, = =; the third curve, &, = n+iy,
starts horizontally at w = w,, £, = n and rises until it again becomes horizontal at

= w,. For o > w, the graphs of £, , = £, ,(w?) = n+F+iy are two smooth curves,
each the image of the other refiected in the ¢ = = plane.

9. THICKNESS-TWIST WAVES IN A COPPER PLATE

Consider an infinite plate bounded by the free surfaces p, = + N. The waves described
in the previous section, propagating along this plate, are called thickness—twist waves.
Substituting the solution of that section, equation (29) into the difference operator
O,(%4 4,1,) defined in Section 3(a), results in:

GO(Aflhzhg) = 4[A,g11(hy, h3, p1)+Asg12(hy, h3, py)+ Asg21(hy, b3, py)
+A4822(hy s b3, p)JEEO T,
where
g1(h1, hy, py) = cos(hy0) cos ;(hy +p,)—cos Epy,
82/hy, h3, py) = cos(h;0)sin E(hy +py)—singp;,  j=12.
Consider, first, only the symmetric solution. The boundary conditions yield; for
pp=-—-N
0 = A,[B7:11(1,0, — N)+83g1,(0, 1, — N)+B2g,,(0,2, — N)+B3g,,(— 1,0, = N)
+B10811(— 1, 1, =N)+B1481,(—2,0, = N)]+ A4,[B0g,5(1,0, — N)+ B3g,2(0, 1, —N)
+B3812(0,2, = N)+B3812(— 1,0, = N)+ B0g12(— 1, 1, = N)+BL.815(— 2,0, — N)]

(30)
and, forp, = —N+1
0= A,[Big;(—1,0, =N+ 1)+ Bl.g,,(=2,0, — N +1)]
+A,(B5812(— 1,0, =N+ 1)+ B1,8,,(—2,0, =N +1)]. (31

Now,

gl](hhh.%,pl) = glj(_hl’h3a —p;1), and ng(hl’hs’pl) = “821(_’11’}13’ —p1)

so the boundary conditions at p;, = N, N—1 yield no additional information.
Setting the determinant of the coefficients in the boundary conditions equal to zero
yields the secular equations:

0 = [B3Py]cos &N cos €,N +[BAP, + 2B, Ps] cos €N sin £, N sin &,
+[B5Ps +2B14Ps] sin &N cos &N sin &, +[(Bs +2B1s)Ps] sin § N sin {,N,  (32a)
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for the symmetric case and
0 = [BAP,]sin &, N sin §,N —[BLP, +2B1,Ps) sin &N cos &,N sin &,

—[BsP;+2B14Ps) cos & N sin &, N sin &; +[(B5+2B14)Ps] cos § N cos £, N, (32b)
for the antisymmetric case, where
Py = [M+2M,¢,8,](¢1— ¢2), P,
P, = M, +2M 3¢, +2M,¢,[3— (¢, + ¢2)], Ps
Py = —{M+2M;¢,+2M,$,[3—(d1+¢2)]}, Ps

and

—2M,(¢,— @) sin &, sin&,,
M +M 9, +2M3¢,(2—¢,),
—{M+M ¢, +2M,¢,2—¢,)},

M, = (BI+Bo)(1—cos 0)+ Y1 —cos 20), M, = BJ+ B3, cos 6,
M, =B}, M, = B+ B3+ B3 cos .

In Section 8 it was shown that for most materials, ¢, > [b, —2b¢(1—cos 6)]/4bs > 2.
Then &, = n+iy,, where cosh¢y; = ¢, —1 >» 2, and therefore

cos ;N = cos(m+iy;)N = (—1) coshy; N
sin ¢, N = sin(nr+iy )N = (—1)" sinh ;N
Now, unless N is very small, the argument of the hyperbolic functions, ¥ N is quite large

and the approximation cosh y; N ~ sinh ;N is valid. Using this approximation, the
secular equations may be reduced to

0 = {BsP, +i[BsPs+2B14P] sin &,} cos {,N
+{[B5P, +2B14Ps] sin &, +i[(B5 +2B14)P4]}sin E,N, (33a)
for the symmetric case and

0 = {[BsP,+2B14Ps] sin &, +i[(BS + 2B} 4)P,]} cos €;,N
—{B5P, +i[B5P;+2B14Ps] sin &,} sin &,N, (33b)

for the antisymmetric case. These are the secular equations employed in the present
calculations.

Figure 4 presents the real branches of the dispersion relation for the thickness-twist
waves in a plate 15 layers thick: N = 7. The parameter s identifying each curve is the
number of nodes through the thickness; the curves with an even number of nodes are the
symmetric solutions, those with an odd number are the antisymmetric solutions.

Analysis of the problem by the theory of elasticity leads to the well known dispersion
relation which may be written as:

Deont = (1/2h)y/ Caa/ps® +(2hn/m)' 1%,
= [27/(2N + 1)a)\/[Cya/p][s* + (4hO/ma)lt, s = 0,1,2,....  (34)

where 2h = (2N +1)(a/2) is the plate thickness and # = 26/a is the wave number. The
cutoff frequency for the first antisymmetric mode, i.e. w (s = 1,7 = 0), is denoted as @
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FREQUENCY, w {I0'2 rad./sec)
NORMALIZED FREQUENCY, w/@

0 1 1 ) I 1 1 1 1 1 )
0 #10 2v/10 3%/10 4w/I0 5%/10 6%/10 /10 810 9O =

WAVE VECTOR, 8

Fi1G. 4. The real branches of the dispersion relation for N = 7: face-shear (S = 0) and thickness-twist
(S =1,...14) waves in a plate.

and is used as a reference frequency. This reference frequency has the value 3-38 x 10*2 rad./
sec in the present case. The normalized frequencies for the continuum are then:

Woon/® = [$* +(2hn/n)*)F = [s®+(4h8/ra)*]t, s=0,1,2,.... (35)

The infinity of real branches of this continuum dispersion relation are all hyperbolic
curves extending from low frequency cutoffs at # = 0, @W..n/@ = 0, 1,2,..., oo to infinite
frequencies and wave numbers. On the other hand there are only a finite number, 2N +1,
of modes of vibration for the lattice, corresponding to 0, 1,2,..., 2N nodes through the
plate thickness, and therefore only 2N + 1 branches in the dispersion relation. Each of
these branches has a high frequency cutoff at 8 = & in addition to a low frequency cutoff *

* For the present case, these low frequency cutoffs are very closely approximated by :

_ HON+1) | ns ] [a(aN +1) | ns ]2
= - ,§=0,1,... <2N
w/@®d [ m sin GNTT) 000122 p- sin 3ON+T) s < +1
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at 8 = 0. Therefore the continuum is a good approximation to the lattice only in the low
frequency, long wavelength (A = ma/6) region. All wavelengths, along and through the
thickness of the plate, must be large in comparison to a for the continuum approximation
to be valid.

The displacements are given by:

Uz pips = Aal(A1/A2)(— 1) cosh Y, py +cos &,py]e"P2 ™), (36a)
for the symmetric case and
Ul .0 = Adl(A3/A)(— 1) sinh §,p, +sin &,pyJePo8 e, (36b)
for the antisymmetric case, where, from the p, = — N + 1 boundary condition
A A, = (— 1" {[B5¢,] cos E,N —[(Bs +2B14) sin §,] sin &, N}
ne cosh  N[B5¢1 —(B5 +2B1.)(¢7 — 261)*] ’
(= 1Y Y[Bs¢,] sin &, N +[(B5+2B14) sin &,] cos &,N}
A3/A, =

cosh ; N[B5d; — (B5+2B14) (@] —2¢ )]

The mode shapes for 8 = 0 are shown in Fig. 5. It is apparent that for the first few
modes the mode shapes are close approximations to sinusoidal curves, and it is for these
modes that the continuum approximation is valid. However as the number of nodes
through the thickness increases, the mode shapes differ more and more markedly from
sinusoidal curves and the continuum approximation loses its validity even for long wave-
lengths along the plate.

The displacements consist of the sum of two waves across the thickness of the plate.
The first wave has a complex wave number, ¢, = n+iy,, the second, a real wave number,
&, = x,. The variation of these wave numbers with the wave number along the plate, 6,
for0 < 0 < m,isslight : Y, remains constant to within 0-1 per cent, while y, varies by about
3 per cent. Therefore the mode shapes remain essentially constant as the wavelength
along the plate varies.

Mindlin [3] has analyzed the problem of the thickness-twist vibrations for a lattice
plate consisting of a simple cubic material having nearest and next-nearest neighbor
central force interactions and angular interactions between three successive, non-collinear
particles. He obtains the following closed form solutions for the dispersion relations and
the displacements

w/® = [2(2N + 1)/n] [sin2 2(2;—5_*_1)+sin2(9/2):|,
5 _ nsp, . TSPy i(p38 — w1) =
U203 [A‘COSZN+1+A2 sm———2N+1]e , §=01,...<2N+1

The displacements here are given by one wave across the thickness with wave number
sn/(2N +1). If @ is assigned the value 3-38 x 102 rad./sec, its value for the present case,
these equations give results for the dispersion curves and mode shapes which are indis-
tinguishable from those presented in Figs. 4 and 5.
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F1G. 5. Frequencies and mode shapes, 6 = 0.
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APPENDIX

The difference operators may be written as:

OoMiupats) = UET + EY)(EZ + EP)EY + EF)— 811U},
Oy (A hay) = [(EY + EY)(EY — E)(EY — ED)IU;

1P2p3°

O,(4 4,0,) = [(EY —ER)(ER +E%)(EY —E¥)]US

1P2p3?

O3(45,0,) = [(EY — EY)(ES — EP)(EY + ER)U;

1pP2p3°

Then, expanding the terms:

Ep+ B = (L+ AT +(1- A7

= 2+hy(A] —A;)+—-—-h‘(h2"_ D (A{'2+A;2)+———————h1(h‘_313("‘_2) (AT -AD?)
h, — - -
U R TR FNST

Ep—Ep = (1+A7)M—(1- A7

hythy — —1th, —
+hl(hl_1)(hl—2)(h1_3) (A-l+4_A1—4)+ R

4!

And, in terms of the central differences:

A —A; = AL A +A; =20, AF2+A72 = AX+2A2, AJ2—A]2 = 2A2A,
AFI—A7? = AS+2A% A3 +A;3 = 20(A +A2), A+ A% = A8 +4AS 4 3A%,

AF* = A7* = 20(AS+2A%, .. ..
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Then
B hih, —1 hythy—1)(h, -2
EM 4 EM = 2+h§A§+l—(21—!——) (A‘}+2Af)+L3—3(1—) (A% +3A%)
hyh, —1)(hy—2)(h, -3
LA )(41' Whi=3) s aps 12884 ...

5 hythy—1 - —
EM—E% = 2h,A, +~%_2 2024, +M}i_;_3(’_'1_2 (At+A2A,

hy(hy = 1)(hy = 2)(hy —
Pl 0203 (¢,

The final forms are obtained by substituting these terms into the expressions for the
operators.

(Received 15 October 1970)

AGcTpakT—Onpenensaiorcs KOHEYHO PA3HOCTHHIC YDaBHCHMS [JBHAKCHHA DICCTOrO DOPARKAa H
OPHCOCAMHCHHLIE KPAeBHE YCJIOBHS AJIA IJIaBHMWX IUIOCKOCTEHl nJisi IpaHELCHTPHPOBAHHOM KyOmueckoit
CETKH MAacCOBbLIX YacTHL. PemaloTcsi ypapHEHMs IUJIs BOJIH CABMIOB IPaHM M CABHIOB IO TOJIIWHE, B
IUTIACTHHKE C AByMA CBOOOAHBIMH rpansmu. aercs pacuer BHAOB xojieGaHHH M CIEXTPH 4acTOTH ANs

Menn. Pe3ynbTaThl CPaBHHBAIOTCA ¢ NPEOBAYLIMM DPELICHHEM IUIA NPOCTOTO KyOHYeCKoro MaTepHaia
H C PEIICHHEM KIIACCHYECKHX YPABHEHHH YIIPYTOCTH.



